C#语言实现最小生成树算法(Minimum Spanning Tree)

C#语言实现最小生成树算法(Minimum Spanning Tree)

最小生成树(Minimum Spanning Tree,MST)算法有多种实现方法,其中最常见的两种是Prim算法和Kruskal算法。以下是使用C#语言分别实现这两种算法的示例代码:

使用Prim算法实现最小生成树

Prim算法适用于稠密图(dense graph),它从一个顶点开始,逐步扩展最小生成树,直到包含所有顶点。

using System;
using System.Collections.Generic;

class PrimMST
{
    private static int V = 5; // Number of vertices

    // A utility function to find the vertex with minimum key value, from
    // the set of vertices not yet included in MST
    int MinKey(int[] key, bool[] mstSet)
    {
        // Initialize min value
        int min = int.MaxValue, minIndex = -1;

        for (int v = 0; v < V; v++)
            if (mstSet[v] == false && key[v] < min)
            {
                min = key[v];
                minIndex = v;
            }

        return minIndex;
    }

    // Function to print the constructed MST stored in parent[]
    void PrintMST(int[] parent, int[,] graph)
    {
        Console.WriteLine("Edge /tWeight");
        for (int i = 1; i < V; i++)
            Console.WriteLine($"{parent[i]} - {i}/t{graph[i, parent[i]]}");
    }

    // Function to construct and print MST for a graph represented using adjacency matrix representation
    public void PrimMST(int[,] graph)
    {
        int[] parent = new int[V]; // Array to store constructed MST
        int[] key = new int[V]; // Key values used to pick minimum weight edge in cut
        bool[] mstSet = new bool[V]; // To represent set of vertices not yet included in MST

        // Initialize all keys as INFINITE
        for (int i = 0; i < V; i++)
        {
            key[i] = int.MaxValue;
            mstSet[i] = false;
        }

        // Always include first 1st vertex in MST.
        key[0] = 0; // Make key 0 so that this vertex is picked as first vertex
        parent[0] = -1; // First node is always root of MST

        // The MST will have V vertices
        for (int count = 0; count < V - 1; count++)
        {
            // Pick the minimum key vertex from the set of vertices not yet included in MST
            int u = MinKey(key, mstSet);

            // Add the picked vertex to the MST Set
            mstSet[u] = true;

            // Update key value and parent index of the adjacent vertices of the picked vertex.
            // Consider only those vertices which are not yet included in MST
            for (int v = 0; v < V; v++)
                if (graph[u, v] != 0 && mstSet[v] == false && graph[u, v] < key[v])
                {
                    parent[v] = u;
                    key[v] = graph[u, v];
                }
        }

        // print the constructed MST
        PrintMST(parent, graph);
    }

    // Driver Code
    public static void Main()
    {
        /* Let us create the following graph
              2    3
          (0)--(1)--(2)
           |   / /   |
          6| 8/   /5 |7
           | /     / |
          (3)-------(4)
               9          */

        int[,] graph = new int[,] {
            { 0, 2, 0, 6, 0 },
            { 2, 0, 3, 8, 5 },
            { 0, 3, 0, 0, 7 },
            { 6, 8, 0, 0, 9 },
            { 0, 5, 7, 9, 0 }
        };

        PrimMST t = new PrimMST();
        t.PrimMST(graph);
    }
}

C#语言实现最小生成树算法(Minimum Spanning Tree)

最小生成树(Minimum Spanning Tree,MST)算法有多种实现方法,其中最常见的两种是Prim算法和Kruskal算法。以下是使用C#语言分别实现这两种算法的示例代码:

使用Prim算法实现最小生成树

Prim算法适用于稠密图(dense graph),它从一个顶点开始,逐步扩展最小生成树,直到包含所有顶点。

using System;
using System.Collections.Generic;

class PrimMST
{
    private static int V = 5; // Number of vertices

    // A utility function to find the vertex with minimum key value, from
    // the set of vertices not yet included in MST
    int MinKey(int[] key, bool[] mstSet)
    {
        // Initialize min value
        int min = int.MaxValue, minIndex = -1;

        for (int v = 0; v < V; v++)
            if (mstSet[v] == false && key[v] < min)
            {
                min = key[v];
                minIndex = v;
            }

        return minIndex;
    }

    // Function to print the constructed MST stored in parent[]
    void PrintMST(int[] parent, int[,] graph)
    {
        Console.WriteLine("Edge /tWeight");
        for (int i = 1; i < V; i++)
            Console.WriteLine($"{parent[i]} - {i}/t{graph[i, parent[i]]}");
    }

    // Function to construct and print MST for a graph represented using adjacency matrix representation
    public void PrimMST(int[,] graph)
    {
        int[] parent = new int[V]; // Array to store constructed MST
        int[] key = new int[V]; // Key values used to pick minimum weight edge in cut
        bool[] mstSet = new bool[V]; // To represent set of vertices not yet included in MST

        // Initialize all keys as INFINITE
        for (int i = 0; i < V; i++)
        {
            key[i] = int.MaxValue;
            mstSet[i] = false;
        }

        // Always include first 1st vertex in MST.
        key[0] = 0; // Make key 0 so that this vertex is picked as first vertex
        parent[0] = -1; // First node is always root of MST

        // The MST will have V vertices
        for (int count = 0; count < V - 1; count++)
        {
            // Pick the minimum key vertex from the set of vertices not yet included in MST
            int u = MinKey(key, mstSet);

            // Add the picked vertex to the MST Set
            mstSet[u] = true;

            // Update key value and parent index of the adjacent vertices of the picked vertex.
            // Consider only those vertices which are not yet included in MST
            for (int v = 0; v < V; v++)
                if (graph[u, v] != 0 && mstSet[v] == false && graph[u, v] < key[v])
                {
                    parent[v] = u;
                    key[v] = graph[u, v];
                }
        }

        // print the constructed MST
        PrintMST(parent, graph);
    }

    // Driver Code
    public static void Main()
    {
        /* Let us create the following graph
              2    3
          (0)--(1)--(2)
           |   / /   |
          6| 8/   /5 |7
           | /     / |
          (3)-------(4)
               9          */

        int[,] graph = new int[,] {
            { 0, 2, 0, 6, 0 },
            { 2, 0, 3, 8, 5 },
            { 0, 3, 0, 0, 7 },
            { 6, 8, 0, 0, 9 },
            { 0, 5, 7, 9, 0 }
        };

        PrimMST t = new PrimMST();
        t.PrimMST(graph);
    }
}

打赏

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,您说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

分享从这里开始,精彩与您同在