在Python中实现最短路径算法,可以使用Dijkstra算法。以下是一个使用Dijkstra算法来计算图中单源最短路径的示例:
import heapq
class Graph:
def __init__(self, vertices):
self.vertices = vertices
self.adjacency_list = [[] for _ in range(vertices)]
def add_edge(self, source, target, weight):
self.adjacency_list[source].append((target, weight))
self.adjacency_list[target].append((source, weight)) # 如果是有向图,则去掉这一行
def dijkstra(self, start_vertex):
distances = [float('inf')] * self.vertices
distances[start_vertex] = 0
visited = [False] * self.vertices
pq = [(0, start_vertex)]
while pq:
current_distance, current_vertex = heapq.heappop(pq)
if visited[current_vertex]:
continue
visited[current_vertex] = True
for neighbor, weight in self.adjacency_list[current_vertex]:
distance = current_distance + weight
if distance < distances[neighbor]:
distances[neighbor] = distance
heapq.heappush(pq, (distance, neighbor))
self.print_shortest_paths(start_vertex, distances)
def print_shortest_paths(self, start_vertex, distances):
print(f"Vertex/tDistance from Source {start_vertex}")
for vertex, distance in enumerate(distances):
print(f"{vertex}/t/t{distance}")
if __name__ == "__main__":
graph = Graph(6)
graph.add_edge(0, 1, 4)
graph.add_edge(0, 2, 3)
graph.add_edge(1, 2, 1)
graph.add_edge(1, 3, 2)
graph.add_edge(2, 3, 4)
graph.add_edge(3, 4, 2)
graph.add_edge(4, 5, 6)
graph.dijkstra(0)
在这个示例中,我们创建了一个包含6个顶点的图,并添加了一些边。然后,我们从顶点0开始运行Dijkstra算法,计算并打印出从顶点0到所有其他顶点的最短路径距离。代码使用了Python的heapq
模块来实现优先队列,以确保每次都选择距离最短的顶点进行处理。